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UNIT-4 
SYLLABUS 
Handling large data on a single computer: The problems you face when handling 
large data  
General techniques for handling large volumes of data: Choosing the right 
algorithm, Choosing the right data structure, Selecting the right tools  
General programming tips for dealing with large data sets: Don’t reinvent the 
wheel, Get the most out of your hardware, Reduce your computing needs. 
 
Handling large data on a single computer: - 

What if you had so much data that it seems to outgrow you and your techniques no 
longer seem to suffice? What do you do, surrender or adapt? Luckily you chose to adapt, 
because you’re still reading. 
 
The problems you face when handling large data: - 

A large volume of data poses new challenges, such as overloaded memory and 
algorithms that never stop running. It forces you to adapt and expand your repertoire of 
techniques. But even when you can perform your analysis, you should take care of issues such 
as I/O (input/output) and CPU starvation, because these can cause speed issues. Figure 4.1 
shows a mind map that will gradually unfold as we go through the steps: problems, solutions, 
and tips. 

 
A computer only has a limited amount of RAM. When you try to squeeze more data into 

this memory than actually fits, the OS will start swapping out memory blocks to disks, which is 
far less efficient than having it all in memory. But only a few algorithms are designed to handle 
large data sets; most of them load the whole data set into memory at once, which causes the 
out-of-memory error. Other algorithms need to hold multiple copies of the data in memory or 
store intermediate results. All of these aggravate the problem. 

Even when you cure the memory issues, you may need to deal with another limited 
resource: time. Although a computer may think you live for millions of years, in reality you 
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won’t. Certain algorithms don’t take time into account; they’ll keep running forever. Other 
algorithms can’t end in a reasonable amount of time when they need to process only a few 
megabytes of data. 

A third thing you’ll observe when dealing with large data sets is that components of your 
computer can start to form a bottleneck while leaving other systems idle. Although this isn’t as 
severe as a never-ending algorithm or out-of-memory errors, it still incurs a serious cost. 
Think of the cost savings in terms of person days and computing infrastructure for CPU 
starvation. Certain programs don’t feed data fast enough to the processor because they have to 
read data from the hard drive, which is one of the slowest components on a computer. This has 
been addressed with the introduction of solid state drives (SSD), but SSDs are still much more 
expensive than the slower and more widespread hard disk drive (HDD) technology. 
 
General techniques for handling large volumes of data 

Never-ending algorithms, out-of-memory errors, and speed issues are the most common 
challenges you face when working with large data. 

The solutions can be divided into three categories: using the correct algorithms, 
choosing the right data structure, and using the right tools (figure 4.2). 

 
No clear one-to-one mapping exists between the problems and solutions because many 

solutions address both lack of memory and computational performance. For instance, data set 
compression will help you solve memory issues because the data set becomes smaller. But this 
also affects computation speed with a shift from the slow hard disk to the fast CPU. Contrary to 
RAM (random access memory), the hard disc will store everything even after the power goes 
down, but writing to disc costs more time than changing information in the fleeting RAM. 
When constantly changing the information, RAM is thus preferable over the (more durable) 
hard disc. With an unpacked data set, numerous read and write operations (I/O) are occurring, 
but the CPU remains largely idle, whereas with the compressed data set the CPU gets its fair 
share of the workload. 
 
1. Choosing the right algorithm: - 

Choosing the right algorithm can solve more problems than adding more or better 
hardware. An algorithm that’s well suited for handling large data doesn’t need to load the 
entire data set into memory to make predictions. Ideally, the algorithm also supports 
parallelized calculations. In this section we’ll dig into three types of algorithms that can do 
that: online algorithms, block algorithms, and MapReduce algorithms, as shown in 
figure 4.3. 
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ONLINE LEARNING ALGORITHMS: -  
Several, but not all, machine learning algorithms can be trained using one observation at 

a time instead of taking all the data into memory. Upon the arrival of a new data point, the 
model is trained and the observation can be forgotten; its effect is now incorporated into 
the model’s parameters. For example, a model used to predict the weather can use different 
parameters (like atmospheric pressure or temperature) in different regions. When the data 
from one region is loaded into the algorithm, it forgets about this raw data and moves on to 
the next region. This “use and forget” way of working is the perfect solution for the 
memory problem as a single observation is unlikely to ever be big enough to fill up all the 
memory of a modernday computer. 

Listing 4.1 shows how to apply this principle to a perceptron with online learning. A 
perceptron is one of the least complex machine learning algorithms used for binary 
classification (0 or 1); for instance, will the customer buy or not? 
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We’ll zoom in on parts of the code that might not be so evident to grasp without further 

explanation. We’ll start by explaining how the train_observation() function works. This 
function has two large parts. The first is to calculate the prediction of an observation and 
compare it to the actual value. The second part is to change the weights if the prediction 
seems to be wrong. 

 
The prediction (y) is calculated by multiplying the input vector of independent variables 

with their respective weights and summing up the terms (as in linear regression). Then this 
value is compared with the threshold. If it’s larger than the threshold, the algorithm will 
give a 1 as output, and if it’s less than the threshold, the algorithm gives 0 as output. Setting 
the threshold is a subjective thing and depends on your business case. Let’s say you’re 
predicting whether someone has a certain lethal disease, with 1 being positive and 0 
negative. In this case it’s better to have a lower threshold: it’s not as bad to be found 
positive and do a second investigation as it is to overlook the disease and let the patient die. 
The error is calculated, which will give the direction to the change of the weights. 
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The weights are changed according to the sign of the error. The update is done with the 

learning rule for perceptrons. For every weight in the weight vector, you update its value 
with the following rule: 

 
Where wi is the amount that the weight needs to be changed,  is the learning rate,  is 

the error, and xi is the ith value in the input vector (the ith predictor variable). The error 
count is a variable to keep track of how many observations are wrongly predicted in this 
epoch and is returned to the calling function. You add one observation to the error counter 
if the original prediction was wrong. An epoch is a single training run through all the 
observations. 

 
The second function that we’ll discuss in more detail is the train() function. This 

function has an internal loop that keeps on training the perceptron until it can either 
predict perfectly or until it has reached a certain number of training rounds (epochs), as 
shown in the following listing. 
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Most online algorithms can also handle mini-batches; this way, you can feed them 
batches of 10 to 1,000 observations at once while using a sliding window to go over your 
data. You have three options: 

 Full batch learning (also called statistical learning)—Feed the algorithm all the data 
at once. 

 Mini-batch learning—Feed the algorithm a spoonful (100, 1000, …, depending on what 
your hardware can handle) of observations at a time. 

 Online learning—Feed the algorithm one observation at a time. 
Online learning techniques are related to streaming algorithms, where you see every 

data point only once. Think about incoming Twitter data: it gets loaded into the algorithms, 
and then the observation (tweet) is discarded because the sheer number of incoming 
tweets of data might soon overwhelm the hardware. Online learning algorithms differ from 
streaming algorithms in that they can see the same observations multiple times. True, the 
online learning algorithms and streaming algorithms can both learn from observations one 
by one. Where they differ is that online algorithms are also used on a static data source as 
well as on a streaming data source by presenting the data in small batches (as small as a 
single observation), which enables you to go over the data multiple times. This isn’t the 
case with a streaming algorithm, where data flows into the system and you need to do the 
calculations typically immediately. They’re similar in that they handle only a few at a time. 
 
DIVIDING A LARGE MATRIX INTO MANY SMALL ONES: - 

By cutting a large data table into small matrices, for instance, we can still do a linear 
regression. The logic behind this matrix splitting and how a linear regression can be 
calculated with matrices can be found in the sidebar. It suffices to know for now that the 
Python libraries we’re about to use will take care of the matrix splitting, and linear 
regression variable weights can be calculated using matrix calculus. 
 
Block matrices and matrix formula of linear regression coefficient estimation: - 

Certain algorithms can be translated into algorithms that use blocks of matrices instead 
of full matrices. When you partition a matrix into a block matrix, you divide the full matrix 
into parts and work with the smaller parts instead of the full matrix. In this case you can 
load smaller matrices into memory and perform calculations, thereby avoiding an out-of-
memory error. Figure 4.4 shows how you can rewrite matrix addition A + B into sub 
matrices. 

The formula in figure 4.4 shows that there’s no difference between adding matrices A 
and B together in one step or first adding the upper half of the matrices and then adding the 
lower half. 

All the common matrix and vector operations, such as multiplication, inversion, and 
singular value decomposition (a variable reduction technique like PCA), can be written in 
terms of block matrices.1 Block matrix operations save memory by splitting the problem 
into smaller blocks and are easy to parallelize. 

Although most numerical packages have highly optimized code, they work only with 
matrices that can fit into memory and will use block matrices in memory when 
advantageous. With out-of-memory matrices, they don’t optimize this for you and it’s up to 
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you to partition the matrix into smaller matrices and to implement the block matrix 
version. 

 
A linear regression is a way to predict continuous variables with a linear combination of 

its predictors; one of the most basic ways to perform the calculations is with a technique 
called ordinary least squares. The formula in matrix form is 

 
The Python tools we have at our disposal to accomplish our task are the following: 

 bcolz is a Python library that can store data arrays compactly and uses the hard drive 
when the array no longer fits into the main memory. 

 Dask is a library that enables you to optimize the flow of calculations and makes 
performing calculations in parallel easier. It doesn’t come packaged with the default 
Anaconda setup so make sure to use conda install dask on your virtual environment 
before running the code below. Note: some errors have been reported on importing 
Dask when using 64bit Python. Dask is dependent on a few other libraries (such as 
toolz), but the dependencies should be taken care of automatically by pip or conda. 

 
The following listing demonstrates block matrix calculations with these libraries 
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Note that you don’t need to use a block matrix inversion because XTX is a square matrix 
with size nr. of predictors * nr. of predictors. This is fortunate because Dask doesn’t yet 
support block matrix inversion. 
 
MAPREDUCE  

MapReduce algorithms are easy to understand with an analogy: Imagine that you were 
asked to count all the votes for the national elections. Your country has 25 parties, 1,500 
voting offices, and 2 million people. You could choose to gather all the voting tickets from 
every office individually and count them centrally, or you could ask the local offices to 
count the votes for the 25 parties and hand over the results to you, and you could then 
aggregate them by party. 

Map reducers follow a similar process to the second way of working. They first map 
values to a key and then do an aggregation on that key during the reduce phase. Have a look 
at the following listing’s pseudo code to get a better feeling for this. 

 
One of the advantages of MapReduce algorithms is that they’re easy to parallelize and 

distribute. This explains their success in distributed environments such as Hadoop, but they 
can also be used on individual computers. When implementing MapReduce in Python, you 
don’t need to start from scratch. A number of libraries have done most of the work for you, 
such as Hadoopy, Octopy, Disco, or Dumbo. 
 

2. Choosing the right data structure: - 
Algorithms can make or break your program, but the way you store your data is of equal 

importance. Data structures have different storage requirements, but also influence the 
performance of CRUD (create, read, update, and delete) and other operations on the data 
set. 

Figure 4.5 shows you have many different data structures to choose from, three of which 
we’ll discuss here: sparse data, tree data, and hash data. Let’s first have a look at sparse 
data sets. 
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SPARSE DATA: -  
A sparse data set contains relatively little information compared to its entries 

(observations). Look at figure 4.6: almost everything is “0” with just a single “1” present in 
the second observation on variable 9. 

Data like this might look ridiculous, but this is often what you get when converting 
textual data to binary data. Imagine a set of 100,000 completely unrelated Twitter tweets. 
Most of them probably have fewer than 30 words, but together they might have hundreds 
or thousands of distinct words. In text mining we’ll go through the process of cutting text 
documents into words and storing them as vectors. But for now imagine what you’d get if 
every word was converted to a binary variable, with “1” representing “present in this 
tweet,” and “0” meaning “not present in this tweet.” This would result in sparse data indeed. 
The resulting large matrix can cause memory problems even though it contains little 
information. 

 
Luckily, data like this can be stored compacted. In the case of figure 4.6 it could look like 

this: 
 
data = [(2,9,1)] 
Row 2, column 9 holds the value 1. 

Support for working with sparse matrices is growing in Python. Many algorithms now 
support or return sparse matrices. 
 
TREE STRUCTURES: -  

Trees are a class of data structure that allows you to retrieve information much faster 
than scanning through a table. A tree always has a root value and sub trees of children, each 
with its children, and so on. Simple examples would be your own family tree or a biological 
tree and the way it splits into branches, twigs, and leaves. Simple decision rules make it 
easy to find the child tree in which your data resides. Look at figure 4.7 to see how a tree 
structure enables you to get to the relevant information quickly. 
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In figure 4.7 you start your search at the top and first choose an age category, because 

apparently that’s the factor that cuts away the most alternatives. This goes on and on until 
you get what you’re looking for. 

Trees are also popular in databases. Databases prefer not to scan the table from the first 
line until the last, but to use a device called an index to avoid this. Indices are often based 
on data structures such as trees and hash tables to find observations faster. The use of an 
index speeds up the process of finding data enormously. 
 
HASH TABLES: -  

Hash tables are data structures that calculate a key for every value in your data and put 
the keys in a bucket. This way you can quickly retrieve the information by looking in the 
right bucket when you encounter the data. Dictionaries in Python are a hash table 
implementation, and they’re a close relative of key-value stores. Hash tables are used 
extensively in databases as indices for fast information retrieval. 
 

3. Selecting the right tools: - 
With the right class of algorithms and data structures in place, it’s time to choose the 

right tool for the job. The right tool can be a Python library or at least a tool that’s 



PVP Siddhartha Institute of Technology, Department of IT                                                         13 | P a g e  
 

controlled from Python, as shown figure 4.8. The number of helpful tools available is 
enormous, so we’ll look at only a handful of them. 

 
 
PYTHON TOOLS: - 

Python has a number of libraries that can help you deal with large data. They range from 
smarter data structures over code optimizers to just-in-time compilers. The following is a 
list of libraries we like to use when confronted with large data: 

 Cython—The closer you get to the actual hardware of a computer, the more vital it is for 
the computer to know what types of data it has to process. For a computer, adding 1 + 1 
is different from adding 1.00 + 1.00. The first example consists of integers and the 
second consists of floats, and these calculations are performed by different parts of the 
CPU. In Python you don’t have to specify what data types you’re using, so the Python 
compiler has to infer them. But inferring data types is a slow operation and is partially 
why Python isn’t one of the fastest languages available. Cython, a superset of Python, 
solves this problem by forcing the programmer to specify the data type while 
developing the program. Once the compiler has this information, it runs programs much 
faster 

 Numexpr—Numexpr is at the core of many of the big data packages, as is NumPy for in-
memory packages. Numexpr is a numerical expression evaluator for NumPy but can be 
many times faster than the original NumPy. To achieve this, it rewrites your expression 
and uses an internal (just-in-time) compiler. 

 Numba—Numba helps you to achieve greater speed by compiling your code right before 
you execute it, also known as just-in-time compiling. This gives you the advantage of 
writing high-level code but achieving speeds similar to those of C code. 

 Bcolz—Bcolz helps you overcome the out-of-memory problem that can occur when 
using NumPy. It can store and work with arrays in an optimal compressed form. It not 
only slims down your data need but also uses Numexpr in the background to reduce the 
calculations needed when performing calculations with bcolz arrays. 
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 Blaze—Blaze is ideal if you want to use the power of a database backend but like the 
“Pythonic way” of working with data. Blaze will translate your Python code into SQL but 
can handle many more data stores than relational databases such as CSV, Spark, and 
others. Blaze delivers a unified way of working with many databases and data libraries. 
Blaze is still in development, though, so many features aren’t implemented yet. 

 Theano—Theano enables you to work directly with the graphical processing unit (GPU) 
and do symbolical simplifications whenever possible, and it comes with an excellent 
just-in-time compiler. 

 Dask—Dask enables you to optimize your flow of calculations and execute them 
efficiently. It also enables you to distribute calculations. 
These libraries are mostly about using Python itself for data processing. To achieve 

high-end performance, you can use Python to communicate with all sorts of databases or 
other software. 
 
USE PYTHON AS A MASTER TO CONTROL OTHER TOOLS: - 

Most software and tool producers support a Python interface to their software. This 
enables you to tap into specialized pieces of software with the ease and productivity that 
comes with Python. This way Python sets itself apart from other popular data science 
languages such as R and SAS. You should take advantage of this luxury and exploit the 
power of specialized tools to the fullest extent possible. 

 
General programming tips for dealing with large data sets: - 
The tricks that work in a general programming context still apply for data science. Several 
might be worded slightly differently, but the principles are essentially the same for all 
programmers.  
You can divide the general tricks into three parts, as shown in the figure 4.9 mind map: 

 Don’t reinvent the wheel. Use tools and libraries developed by others.  

 Get the most out of your hardware. Your machine is never used to its full potential; with 
simple adaptions you can make it work harder.  

 Reduce the computing need. Slim down your memory and processing needs as much as 
possible. 
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1. Don’t reinvent the wheel: - 
“Don’t repeat anyone” is probably even better than “don’t repeat yourself.” Add value with 
your actions: make sure that they matter. Solving a problem that has already been solved is 
a waste of time. As a data scientist, you have two large rules that can help you deal with 
large data and make you much more productive, to boot: 
 Exploit the power of databases. The first reaction most data scientists have when 

working with large data sets is to prepare their analytical base tables inside a database. 
This method works well when the features you want to prepare are fairly simple. When 
this preparation involves advanced modeling, find out if it’s possible to employ user-
defined functions and procedures. The last example of this chapter is on integrating a 
database into your workflow. 

 Use optimized libraries. Creating libraries like Mahout, Weka, and other 
machinelearning algorithms requires time and knowledge. They are highly optimized 
and incorporate best practices and state-of-the art technologies. Spend your time on 
getting things done, not on reinventing and repeating others people’s efforts, unless it’s 
for the sake of understanding how things work. 

Then you must consider your hardware limitation. 
 

2. Get the most out of your hardware: - 
Resources on a computer can be idle, whereas other resources are over-utilized. This slows 
down programs and can even make them fail. Sometimes it’s possible (and necessary) to 
shift the workload from an overtaxed resource to an underutilized resource using the 
following techniques: 
 Feed the CPU compressed data. A simple trick to avoid CPU starvation is to feed the 

CPU compressed data instead of the inflated (raw) data. This will shift more work from 
the hard disk to the CPU, which is exactly what you want to do, because a hard disk can’t 
follow the CPU in most modern computer architectures. 

 Make use of the GPU. Sometimes you’re CPU and not your memory is the bottleneck. If 
your computations are parallelizable, you can benefit from switching to the GPU. This 
has a much higher throughput for computations than a CPU. The GPU is enormously 
efficient in parallelizable jobs but has less cache than the CPU. But it’s pointless to 
switch to the GPU when your hard disk is the problem. Several Python packages, such as 
Theano and NumbaPro, will use the GPU without much programming effort. If this 
doesn’t suffice, you can use a CUDA (Compute Unified Device Architecture) package such 
as PyCUDA. It’s also a well-known trick in bitcoin mining, if you’re interested in creating 
your own money. 

 Use multiple threads. It’s still possible to parallelize computations on your CPU. You 
can achieve this with normal Python threads. 
 

3. Reduce your computing needs: - 
“Working smart + hard = achievement.” This also applies to the programs you write. The 
best way to avoid having large data problems is by removing as much of the work as 
possible up front and letting the computer work only on the part that can’t be skipped. The 
following list contains methods to help you achieve this: 
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 Profile your code and remediate slow pieces of code. Not every piece of your code 
needs to be optimized; use a profiler to detect slow parts inside your program and 
remediate these parts. 

 Use compiled code whenever possible, certainly when loops are involved. 
Whenever possible use functions from packages that are optimized for numerical 
computations instead of implementing everything yourself. The code in these packages 
is often highly optimized and compiled. 

 Otherwise, compile the code yourself. If you can’t use an existing package, use either 
a just-in-time compiler or implement the slowest parts of your code in a lower-level 
language such as C or Fortran and integrate this with your codebase. If you make the 
step to lower-level languages (languages that are closer to the universal computer 
bytecode), learn to work with computational libraries such as LAPACK, BLAST, Intel 
MKL, and ATLAS. These are highly optimized, and it’s difficult to achieve similar 
performance to them. 

 Avoid pulling data into memory. When you work with data that doesn’t fit in your 
memory, avoid pulling everything into memory. A simple way of doing this is by reading 
data in chunks and parsing the data on the fly. This won’t work on every algorithm but 
enables calculations on extremely large data sets. 

 Use generators to avoid intermediate data storage. Generators help you return data 
per observation instead of in batches. This way you avoid storing intermediate results. 

 Use as little data as possible. If no large-scale algorithm is available and you aren’t 
willing to implement such a technique yourself, then you can still train your data on only 
a sample of the original data. 

 Use your math skills to simplify calculations as much as possible. Take the 
following equation, for example: (a + b)2 = a2 + 2ab + b2 . The left side will be computed 
much faster than the right side of the equation; even for this trivial example, it could 
make a difference when talking about big chunks of data. 

 
UNIT WISE IMPORTANT QUESTIONS: - 
1. Explain the problems you face when handling large data. 
2. Explain the solutions for handling large data sets. 
3. Discuss in detail about block matrices 
4. What is Map Reduce? Explain in detail. 
5. Explain in details about online learning algorithms 
6. What are problems encountered when working with more data than can fit in memory? 

Explain 
7. How to choose the right data structure? Explain 
8. List and explain different libraries that can help you deal with large data. 
9. “Don’t reinvent the wheel”. Justify the statement 
10. Write the possibilities to shift the workload from an overtaxed resource to an 

underutilized resource.   
11. Explain about general programming best practices when working with large data in 

detail. 
12. What are the different techniques to adapt algorithms to large data sets? Explain. 
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